MADE FOR BUILDING
BUILT FOR LIVING

TIMBER CONCRETE COMPOSITES
Timber concrete composite technology was first introduced into the construction industry several decades ago. The original application started with upgrading of existing timber beam floors.

Today the advantages of this technology are also used in new buildings – either with ribs or solid wood slabs.

The combination using KLH solid wood slabs is an obvious development, which brings technical and economic advantages, especially with large spans.

This combination utilises both the static and physical properties of the two building materials in a very efficient manner. In conventional concrete construction, the concrete, which performs well under compression, is reinforced with reinforcing steel in order to absorb the tensile forces that arise (usually on the underside of the floor).

As timber, unlike concrete, has a high tensile strength, the area of tensile stress is covered by the timber component in TCC applications. When using solid timber panels, the slab is also used as a formwork for the subsequent application of the concrete.

The shear resistant connection between the two building materials plays an essential role in this type of construction. The stiffer the shear connection is executed, the stronger is the TCC element.

KLH TCC SYSTEMS

01 PRODUCT DESCRIPTION

Preparation of KLH TCC elements for pouring the concrete on site (TimCrete © Ramboll)

Stress distribution and decisive cutting forces on the composite beam (Holz-Beton-Verbund; König, Holschemacher, Dehn; 2004)
The favourable static properties allow for large spans to be executed with increased stiffness and only a small gain in weight.

Partial prefabrication is often aimed at, for high cost effectiveness. The cost of formwork is reduced to a minimum due to the pre-installed timber slab.

- Lower susceptibility to vibration
- Better basic sound insulation
- Non-combustible residual cross-section
- Greater impermeability

TCC systems have a lower susceptibility to vibration, which has a positive effect, especially with large spans.

The fire resistance of the floor is also improved due to the non-combustible concrete layer. Especially the tightness against gas and fire extinguishing water is ensured over a prolonged period.

The additional weight of the concrete improves the acoustic properties of the floor. Additional mass for acoustic improvement can be largely dispensed with.
Various composite systems can be used in the construction process. A differentiation can be made here between those methods with and those methods without general building regulations or inspectorate approval. Notched (bird’s mouth) or grooved systems are by far the most cost effective systems to use. These systems do not have standard approval and must be calculated individually. However, this method is very efficient because of the minimal material costs and the low labour costs. Approved methods include certain types of screw connections and TCC shear connectors. With these composite systems, the effort for structural analysis is reduced, but they are associated with higher system costs.

GROOVES

Grooves are milled into the timber slab which take over the shear connection between the timber and the concrete. In order to intercept the deflection forces, additional wood screws are used. It is possible to dispense with securing by means of screws, but the screw connection results in a more favourable distribution of forces in the cross-section. This method is one of the most cost-effective variants due to the low consumption of connectors and the standardised milling process.

TCC SHEAR CONNECTORS

In this system, perforated plates or flat steel strips are glued or pressed into the timber slab. There is no need to provide additional securing points against lift off. Mounting of the connecting strips is conveniently carried out in the factory.

SCREW CONNECTIONS

In general, these connections use screws, driven in at a specific angle, with a stop device (dependent on the system) to set the insertion depth.
Completion: 2013
4-storey residential building
Construction of the shell in 4 weeks

TCC SYSTEM:
- Grooves with tensile reinforcement
- Spans of 7.5 m
- Prefabrication in the factory
- Delivery of the finished parts with cantilever
- KLH 5s 182 mm DL + 100 mm Concrete

(www.planpark-architekten.de,
Photos: ABA Holz van Kempen GmbH und C. Lohfink)
To realise specific project requirements, KLH relies on its proven expertise and flexibility in production.

KLH production lines enable the automated milling of the necessary grooved sections, required for transmission of the static forces in the TCC floor.

The dimensioning of the grooves arises from several factors. The minimum width and number of the grooves are specified by the necessary transmission of shear forces. The depth of the groove must be adjusted to the top layer of the KLH solid wood panel.

The fabrication of slots for inserting the sheets should also be carried out in the factory. Afterwards, gluing of the perforated plates can also be carried out in the KLH special production.

In the following preliminary design table (page 07), the number of grooves was set at six in order to achieve the highest possible composite stiffness.

It is mandatory to assure proper handling for transport and assembling of prefabricated elements.
Minimum panel thickness for R 90

According to ETA-06/0138: 2017

Concrete grade C 50/60
Groove rigidity 500 kN/mm (SLS), 6 grooves per element
Creep coefficient concrete $f = 2.0$, concrete shrinkage $\varepsilon = 414 \times 10^{-6}$

Service class 1
$k_{def} = 0.6$

Imposed load (including additional load for light partition walls): 3.8 kN/m² for DK I
Constant load: 2 kN/m² in addition to supporting structure (KLH and concrete)

Deflection limits according to ÖNORM B 1995-1-1: 2014

Vibration test according to ÖNORM B 1995-1-1: 2014

Load capacity

a) verification of bending stresses
b) verification of shear stresses

<table>
<thead>
<tr>
<th>Floor class I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KLH strength</td>
<td>Concrete strength</td>
</tr>
<tr>
<td>Span ℓ</td>
<td>[mm]</td>
</tr>
<tr>
<td>6.5 m</td>
<td>160</td>
</tr>
<tr>
<td>7.0 m</td>
<td>160</td>
</tr>
<tr>
<td>7.5 m</td>
<td>180</td>
</tr>
<tr>
<td>8.0 m</td>
<td>180</td>
</tr>
<tr>
<td>8.5 m</td>
<td>200</td>
</tr>
<tr>
<td>9.0 m</td>
<td>200</td>
</tr>
</tbody>
</table>

This table is only intended for structural pre-analysis purposes and does not replace necessary static calculations!